The Drosophila Connectome as a Computational Reservoir for Time-Series Prediction
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In this work, we explore the possibility of using the topology and weight distribution of the connectome of a Drosophila, or fruit fly, as a reservoir for multivariate chaotic time-series prediction. Based on the information taken from the recently released full connectome, we create the connectivity matrix of an Echo State Network. Then, we use only the most connected neurons and implement two possible selection criteria, either preserving or breaking the relative proportion of different neuron classes which are also included in the documented connectome, to obtain a computationally convenient reservoir. We then investigate the performance of such architectures and compare them to state-of-the-art reservoirs. The results show that the connectome-based architecture is significantly more resilient to overfitting compared to the standard implementation, particularly in cases already prone to overfitting. To further isolate the role of topology and synaptic weights, hybrid reservoirs with the connectome topology but random synaptic weights and the connectome weights but random topologies are included in the study, demonstrating that both factors play a role in the increased overfitting resilience. Finally, we perform an experiment where the entire connectome is used as a reservoir. Despite the much higher number of trained parameters, the reservoir remains resilient to overfitting and has a lower normalized error, under 2%, at lower regularisation, compared to all other reservoirs trained with higher regularisation.