Can Progressive Supranuclear Palsy Be Accurately Identified via MRI with the Use of Visual Rating Scales and Signs?
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Introduction: Neurodegenerative diseases like progressive supranuclear palsy (PSP) present challenges concerning their diagnosis. Neuroimaging using magnetic resonance (MRI) may add diagnostic value. However, modern techniques such as volumetric assessment using Voxel-Based Morphometry (VBM), although proven to be more accurate and superior compared to MRI, have not gained popularity among scientists in the investigation of neurological disorders due to their higher cost and time-consuming applications. Conventional brain MRI methods may present a quick, practical, and easy-to-use imaging rating tool for the differential diagnosis of PSP. The purpose of this study is to evaluate a string of existing visual MRI rating scales and signs regarding their impact for the diagnosis of PSP. Materials and Methods: The population study consisted of 30 patients suffering from PSP and 72 healthy controls. Each study participant underwent a brain MRI, which was subsequently examined by two independent researchers in a double-blinded fashion. Fifteen visual rating scales and signs were evaluated, including pontine atrophy, cerebellar atrophy, midbrain atrophy, aqueduct of Sylvius enlargement, cerebellar peduncle hyperintensities, enlargement of the fourth ventricle (100% sensitivity and 71% specificity) and left temporal lobe atrophy (97% sensitivity and 78% specificity). Conclusions: Enlargement of the Sylvius aqueduct, enlargement of the fourth ventricle and atrophy of both temporal lobes together with the presence of morning glory and hummingbird signs can be easily and quickly distinguished and identified by an experienced radiologist without involving any complex analysis, making them useful tools for PSP diagnosis. MRI visual scale measurements could be added to the diagnostic criteria of PSP and may serve as an alternative to highly technical and more sophisticated quantification methods.