Breaking Barriers in Thyroid Cytopathology: Harnessing Deep Learning for Accurate Diagnosis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: We address the application of artificial intelligence (AI) techniques in thyroid cytopathology, specifically for diagnosing papillary thyroid carcinoma (PTC), the most common type of thyroid cancer. Methods: Our research introduces deep learning frameworks that analyze cytological images from fine-needle aspiration cytology (FNAC), a key preoperative diagnostic method for PTC. The first framework is a patch-level classifier referred as “TCS-CNN”, based on a convolutional neural network (CNN) architecture, to predict thyroid cancer based on the Bethesda System (TBS) category. The second framework is an attention-based deep multiple instance learning (AD-MIL) model, which employs a feature extractor using TCS-CNN and an attention mechanism to aggregate features from smaller-patch-level regions into predictions for larger-patch-level regions, referred to as bag-level predictions in this context. Results: The proposed TCS-CNN framework achieves an accuracy of 97% and a recall of 96% for small-patch-level classification, accurately capturing local malignancy information. Additionally, the AD-MIL framework also achieves approximately 96% accuracy and recall, demonstrating that this framework can maintain comparable performance while expanding the diagnostic coverage to larger regions through patch aggregation. Conclusions: This study provides a feasibility analysis for thyroid cytopathology classification and visual interpretability for AI diagnosis, suggesting potential improvements in patient outcomes and reductions in healthcare costs.