Hazy Aware-YOLO: An Enhanced UAV Object Detection Model for Foggy Weather via Wavelet Convolution and Attention-Based Optimization
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Foggy weather critically undermines the autonomous perception capabilities of unmanned aerial vehicles (UAVs) by degrading image contrast, obscuring object structures, and impairing small target recognition, which often leads to significant performance deterioration in conventional detection models. To address these challenges in automated UAV operations, this study introduces Hazy Aware-YOLO (HA-YOLO), an enhanced detection framework based on YOLO11, specifically engineered for reliable object detection under low-visibility conditions. The proposed model incorporates wavelet convolution to suppress haze-induced noise and enhance multi-scale feature fusion. Furthermore, a novel Context-Enhanced Hybrid Self-Attention (CEHSA) module is developed, which sequentially combines channel attention aggregation (CAA) with multi-head self-attention (MHSA) to capture local contextual cues while mitigating global noise interference. Extensive evaluations demonstrate that HA-YOLO and its variants achieve superior detection precision and robustness compared to the baseline YOLO11, while maintaining model efficacy. In particular, when benchmarked against state-of-the-art detectors, HA-YOLO exhibits a better balance between detection accuracy and complexity, offering a practical and efficient solution for real-world autonomous UAV perception tasks in adverse weather.