Spatial and Temporal Variability in Atmospheric Emissions from Oil and Gas Sector Sources in the Marcellus Production Region
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Temporal variability in emissions from oil and gas supply chains depends on the spatial scale at which emissions are aggregated. This work demonstrates a framework for simulating temporally and spatially resolved emission inventories that can be broadly applied in oil and gas production regions. Emissions of methane, ethane, volatile organic compounds (VOCs), and nitrogen oxides (NOxs) from oil and gas facilities in the Marcellus production region were estimated at a one-hour time resolution for the calendar year 2023 and were aggregated at the grid cell (4 km by 4 km), county, and basin level. Maximum to average emission rate ratios decreased as the scale of spatial aggregation increased and differed by pollutant. At the grid cell level, ratios of maximum to average emission rates exceeded 100 in some grid cells for VOCs. In contrast, basin level maximum to average ratios for NOx emission rates were less than 1.1. The sources driving temporal variability in hydrocarbon emissions were well completions and liquid unloadings, while the sources driving temporal variability in NOx emissions were preproduction activities such as drilling and hydraulic fracturing. Temporally and spatially resolved inventories can inform pollutant- and region-specific measurement campaigns and mitigation strategies. Reconciliation between inventories and observations must consider event frequency, duration, and persistence, along with the spatial scale and timing of measurements.