Metallography Specimen Mounting Device Suitable for Industrial or Educational Purposes
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This work presents a novel, compact (six pieces), low-cost (<$500 USD), and easy-to-manufacture metallography mounting device. The device is designed to produce high-quality polymer encapsulated samples that rival those obtained from commercial equipment ($5000–$10,000 USD). Utilizing the House of Quality (HoQ) framework within Quality Function Deployment (QFD), the device prioritizes critical customer requirements, including safety (validated via finite element method, FEM), affordability, and compatibility with standard hydraulic presses. FEM analysis under 29 MPa pressure revealed a maximum Von Mises stress of 80 MPa, well below the AISI 304 stainless steel yield strength of 170 MPa, yielding a static safety factor of 2.1. Fatigue analysis under cyclic loading (mean stress σm = 40 MPa, amplitude stress σa = 40 MPa) using the Modified Goodman Criterion demonstrated a fatigue safety factor of 3.75, ensuring infinite cycle durability. The device was validated at 140 °C (413.15 K) with a 5-min dwell time, encapsulating samples in a cylindrical configuration (31.75 mm diameter) using a 200 W heating band. Benchmarking confirmed performance parity with commercial systems in edge retention and surface uniformity, while reducing manufacturing complexity (vs. conventional 100-piece systems). This solution democratizes access to metallography, particularly in resource-constrained settings, fostering education and industrial innovation.