A Scalable and Low-Cost Mobile RAG Architecture for AI-Augmented Learning in Higher Education
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This paper presents a scalable and low-cost Retrieval Augmented Generation (RAG) architecture designed to enhance learning in university-level courses, with a particular focus on supporting students from economically disadvantaged backgrounds. Recent advances in large language models (LLMs) have demonstrated considerable potential in educational contexts; however, their adoption is often limited by computational costs and the need for stable broadband access, issues that disproportionately affect low-income learners. To address this challenge, we propose a lightweight, mobile, and friendly RAG system that integrates the LLaMA language model with the Milvus vector database, enabling efficient on device retrieval and context-grounded generation using only modest hardware resources. The system was implemented in a university-level Data Mining course and evaluated over four semesters using a quasi-experimental design with randomized assignment to experimental and control groups. Students in the experimental group had voluntary access to the RAG assistant, while the control group followed the same instructional schedule without exposure to the tool. The results show statistically significant improvements in academic performance for the experimental group, with p < 0.01 in the first semester and p < 0.001 in the subsequent three semesters. Effect sizes, measured using Hedges g to account for small cohort sizes, increased from 0.56 (moderate) to 1.52 (extremely large), demonstrating a clear and growing pedagogical impact over time. Qualitative feedback further indicates increased learner autonomy, confidence, and engagement. These findings highlight the potential of mobile RAG architectures to deliver equitable, high-quality AI support to students regardless of socioeconomic status. The proposed solution offers a practical engineering pathway for institutions seeking inclusive, scalable, and resource-efficient approaches to AI-enhanced education.