Mushroom-Derived Compounds as Inhibitors of Advanced Glycation End-Products

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Mushrooms like Inonotus obliquus and Ganoderma lucidum show significant pharmacological promise. This review analyzes fungi as sources of natural inhibitors against Advanced Glycation End-products (AGEs)—key drivers of diabetes and neurodegeneration. We highlight that extracts from Lignosus rhinocerus and Auricularia auricula exhibit antiglycation potency (IC50 as low as 0.001 mg/mL) superior to aminoguanidine. Inhibitory effects are attributed to bioactive fractions including FYGL proteoglycans, uronic acid-rich polysaccharides, and fungal-specific metabolites like ergothioneine. These compounds act through multi-target mechanisms across the glycation cascade: competitive inhibition of Schiff base formation, trapping reactive dicarbonyls (e.g., methylglyoxal), transition metal chelation, and direct scavenging of reactive oxygen species (ROS). Furthermore, the review addresses the transition from in vitro potency to in vivo efficacy (RAGE pathway modulation), stability during food processing (UV-B irradiation), and critical safety issues regarding heavy metal bioaccumulation. Mushroom-derived inhibitors represent a sustainable therapeutic alternative to synthetic agents, offering broader protection against glycative stress. This synthesis provides a foundation for developing standardized mushroom-based nutraceuticals for managing AGE-related chronic disorders.

Article activity feed