Towards Sustainable Manufacturing: Deployable Deep Learning for Automated Defect Detection in Aluminum Die-Cast X-Ray Inspection at Hengst SE
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Quality assurance in aluminum die casting is critical, as internal defects—such as porosity—can compromise structural integrity and significantly reduce component service life. In the cost-sensitive manufacturing environment of Germany, early and automated rejection of defective parts is essential to minimize scrap, rework, and energy waste. This study investigates the feasibility and performance of deep learning for automated defect detection in industrial X-ray images of two series-production aluminum die-cast components. A systematic methodology was employed: first, candidate object-detection frameworks (YOLOv5 vs. Faster R-CNN) were evaluated under real-time constraints (<2 s per image) on standard industrial hardware; subsequently, position-specific and single global models were trained on annotated datasets. A systematic hyperparameter study—focusing on input resolution, learning rate, and loss weights—was conducted to optimize accuracy and robustness. The best-performing models achieved F1-scores up to 0.87, with position-specific models outperforming the single global model on average. The approach was validated under real production conditions at Hengst SE (Nordwalde), demonstrating practical feasibility, strong acceptance among quality professionals, and significant potential to accelerate inspections and standardize decision-making. The results confirm that deep learning is a viable alternative to rule-based image processing and holds substantial promise for automating X-ray inspection workflows in aluminum die casting, contributing to both operational efficiency and sustainability goals.