Variation in Seismic Wave Velocities at Shallow Depth and the Masking of Nonlinear Soil Behavior Based on the ARGONET (Cephalonia, Greece) Vertical Array Data
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We investigate the variation in shear-wave velocity (VS) in the shallow soil of the ARGONET vertical array in Cephalonia, Greece, utilizing an extensive 8–10-year dataset of earthquake records and applying seismic interferometry by deconvolution and Generalized Additive Models (GAMs). We identify and quantify the contributions of seasonal variation, soil anisotropy, soil nonlinearity, and long-term VS changes. Of the examined factors, nonlinearity produces the strongest VS changes in the form of reduction of up to several tens of m/s. The azimuthal and seasonal partial effects appear similar in strength. However, VS also exhibits year-to-year variation, with lower levels likely linked to the slow recovery of the soil following strong earthquakes in the broader region. When this partial effect is also considered, the temporal variation of VS is more significant than the azimuthal variation. We also observed that strong weather phenomena, such as the unusual hurricane “Ianos” that hit western Greece in 2020, are captured in our model through tensor interaction terms. Our model can identify VS drops related to nonlinear soil behavior even when masked by other effects. We demonstrate and verify this through seismic interferometry to stepwise increasing parts of earthquake recordings highlighting these within-events or coseismic VS drops.