A Study on the Monitoring and Response Mechanism of Highway Subgrade Structures Based on Ultra-Weak FBG Sensing Array

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Conducting structural monitoring of highway subgrades is crucial for investigating damage evolution mechanisms under dynamic load-temperature coupling effects. However, existing sensing technologies struggle to achieve distributed, long-term, and high-precision measurements of subgrade structures. Therefore, this study employs next-generation fiber-optic array sensing technology to construct a distributed monitoring system based on weak reflection grating arrays. A dual-parameter sensing network for strain and temperature was designed and installed during the expansion and renovation of a highway in Fujian Province, enabling high-precision monitoring of the entire continuous strain field and temperature field of the subgrade structure. Through a comprehensive analysis of dynamic loading test data and long-term monitoring records, the system revealed the dynamic response patterns of subgrade structures under the interaction of modulus differences, burial depth effects, temperature gradients, and load parameters. It elucidated the mechanical sensitivity of flexible base layers and the interlayer stress redistribution mechanism. The study validated that grating array sensors not only offer advantages such as easy installation, a high survival rate, and excellent durability but also enable high-capacity, long-distance, and high-precision measurements of subgrade structures. This provides a new technical approach for full lifecycle monitoring of expressways.

Article activity feed