Artificial Intelligence-Based Sensorless Control of Induction Motors with Dual-Field Orientation

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper introduces a speed-sensorless dual-field-oriented control (DFOC) strategy for induction motors (IMs). DFOC combines the advantages or rotor- and stator-field orientation to significantly reduce the parameter sensitivity of the control regarding the generation of the converter control variable. A simplified structure is also proposed, using only two regulators for the flux and speed control, eliminating the two current regulators. Related to sensorless control, the classical adaptation mechanism within an MRAS (model reference adaptive system) observer is replaced with artificial intelligence (AI)-based approaches. Specifically, artificial neural networks (ANNs) and recurrent neural networks (RNNs) are employed for rotor speed estimation. They offer significant advantages in managing complex and nonlinear systems, providing enhanced flexibility and adaptability compared to traditional MRAS methods. The effectiveness of the proposed sensorless control scheme is validated through both simulation and real-time implementation. The paper focuses on the ANN and RNN architectures, as deep learning models, in terms of the reliability and accuracy of rotor speed estimation under various operating conditions.

Article activity feed