Deep Learning and COVID-19: Two Pathways to Scientific Evolution

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

COVID-19 and deep learning have each marked pivotal milestones in the evolution of modern science. Since the onset of the pandemic, researchers from diverse disciplines have converged to address urgent, real-world challenges, while deep learning has catalyzed methodological innovation across fields. These two phenomena exemplify distinct scientific paradigms: spread-out science, which propagates novel ideas and methods, and merge-in science, which synthesizes existing knowledge to solve complex problems. We introduce the concept of sci-entropy, defined as the difference between the semantic entropy of a paper’s citations and references. Positive sci-entropy reflects the diffusion of new ideas (spread-out), whereas negative values indicate knowledge consolidation (merge-in). Our analysis, spanning deep learning, COVID-19, and 19 additional disciplines, reveals that scientific progress is governed by the dynamic interplay between these two forces. Excessively high sci-entropy may fragment research, while overly low values can stifle innovation. Our findings suggest that the balance between innovation and synthesis is fundamental to the trajectory of scientific development, offering a new framework for understanding interdisciplinary research and knowledge integration.

Article activity feed