The Multi-Branch Deep-Learning-Based Approach to Heart Dysfunction Classification
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cardiovascular diseases (CVDs), which remain globally one of the most common causes of death, are usually diagnosed based on the electrocardiogram (ECG) signal. To support human experts, modern deep-learning models are used for CVD classification problems as an early warning. This article proposes a novel multi-branch architecture focused on processing various modalities of the ECG signal in parallel branches, replacing typical single-input architectures. Each branch is given separate input in the form of the raw signal, domain knowledge, the wavelet transform of the signal, or the signal with drift removed. The proposed method is based on deep-learning core models that can incorporate various modern neural networks. It was thoroughly tested on N-BEATS, LSTM, and GRU neural networks. The proposed architecture allows the retention of the speed of the neural network. At the same time, the combination of independently computed branches improves model performance, which finally exceeds the performance obtained by classical single-branch architectures.