Unsupervised Binary Classifier-Based Object Detection Algorithm with Integrated Background Subtraction Suitable for Use with Aerial Imagery
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This research presents the development of a novel object detection algorithm designed to identify humans in natural outdoor environments using minimal computational resources. The proposed system, SARGAS, combines a custom convolutional neural network (CNN) classifier with MOG2 background subtraction and partial affine transformations for camera stabilization. A secondary CNN refines detections and reduces false positives. Unlike conventional supervised models, SARGAS is trained in a partially unsupervised manner, learning to recognize feature patterns without requiring labeled data. The algorithm achieved a recall of 93%, demonstrating strong detection capability even under challenging conditions. However, the overall accuracy reached 65%, due to a higher rate of false positives—an expected trade-off when maximizing recall. This bias is intentional, as missing a human target in search and rescue applications carries a higher cost than producing additional false detections. While supervised models, such as YOLOv5, perform well on data resembling their training sets, they exhibit significant performance degradation on previously unseen footage. In contrast, SARGAS generalizes more effectively, making it a promising candidate for real-world deployment in environments where labeled training data is limited or unavailable. The results establish a solid foundation for further improvements and suggest that unsupervised CNN-based approaches hold strong potential in object detection tasks.