Quinolone Resistance and Zoonotic Potential of Corynebacterium ulcerans from Domestic Animals in Brazil

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Corynebacterium ulcerans is an emerging zoonotic pathogen capable of cau-sing diphtheria-like infections in humans. Objectives: we report, for the first time in Brazil, the detection and phenotypic/genomic characterization of three atoxigenic ST-339 strains isolated from domestic animals, including one with a ciprofloxacin resistance profile linked to double GyrA mutations (S89L, D93G). Methods: species identification was performed by MALDI-TOF MS, followed by in vitro antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatic analyses to predict virulence determinants, antimicrobial resistance genes, CRISPR–Cas systems, mobile genetic elements, and in silico structural analysis as well as phylogenetic reconstruction. Results: whole-genome sequencing confirmed species identity, revealed high genetic similarity, and identified distinct phylogenetic subclades, suggesting potential international dissemination. Genomic analyses showed conserved virulence determinants, such as incomplete pilus clusters, iron acquisition systems, and the pld gene, with the absence of the tox gene. Molecular modeling and dynamics simulations indicated that GyrA mutations disrupt critical ciprofloxacin–magnesium–water interactions, reducing binding stability. Mobile genetic elements, prophages, and CRISPR–Cas systems underscored the genomic plasticity of these isolates. Conclusions: these findings document a little-studied antimicrobial resistance mechanism in zoonotic C. ulcerans, highlighting the need for strengthened surveillance and further research on virulence and resistance, even in ato-xigenic strains.

Article activity feed