Integration of Color Analysis, Firmness Testing, and visNIR Spectroscopy for Comprehensive Tomato Quality Assessment and Shelf-Life Prediction
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study evaluates the potential of integrating visible and near-infrared (visNIR) spectroscopy, color analysis, and firmness testing for non-destructive tomato quality assessment and shelf-life prediction. Tomato fruit (cv. HM1823) harvested at four ripening stages were monitored over 12 days at 22 °C to investigate ripening stage-specific variations in key quality parameters, including color (hue angle), firmness (compression), and nutritional composition (pH, soluble solids content, and titratable acidity ratio). Significant changes in these parameters during storage highlighted the need for advanced tools to monitor and predict quality attributes. Spectral data (340–2500 nm) captured using advanced and cost-effective portable spectroradiometers, coupled with chemometric models such as partial least squares regression (PLSR), demonstrated reliable predictions of shelf-life and nutritional quality. The near-infrared spectrum (900–1700 nm) was particularly effective, with variable selection methods such as genetic algorithm (GA) and variable importance in projection (VIP) scores enhancing model accuracy. This study highlights the promising role of visNIR spectroscopy as a rapid, non-destructive tool for optimizing postharvest management in tomato. By enabling real-time quality assessments, these technologies support sustainable agricultural practices through improved decision-making, reduced postharvest losses, and enhanced consumer satisfaction. The findings also validate the utility of affordable spectroradiometers, offering practical solutions for stakeholders aiming to balance cost efficiency and reliability in postharvest quality monitoring.