Soil Compaction Prediction in Precision Agriculture Using Cultivator Shank Vibration and Soil Moisture Data

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Precision agriculture applies data-driven strategies to manage spatial and temporal variability within fields, aiming to increase productivity while minimizing pressure on natural resources. As interest in smart tillage systems expands, this study explores a central question: Can tillage tools be used to measure soil compaction during regular field operations? To investigate this, vibration data measurements were collected from a cultivator shank in the northeast of Kansas using the AVDAQ system. The test field soils were Reading silt loam and Eudora–Bismarck Grove silt loams. The relationship between shank vibrations, soil moisture (measured by a Hydrosense II soil–water sensor), and soil compaction (measured by a cone penetrometer) was evaluated using machine learning models. Both XGBoost and Random Forest demonstrated strong predictive performance, with Random Forest achieving a slightly higher correlation of 93.8% compared to 93.7% for XGBoost. Statistical analysis confirmed no significant difference between predicted and measured values, validating the accuracy and reliability of both models. Overall, the results demonstrate that combining vibration data with soil moisture data as model inputs enables accurate estimation of soil compaction, providing a foundation for future in situ soil sensing, reduced tillage intensity, and more sustainable cultivation practices.

Article activity feed