Controlled-Release Urea Coordinates Maize Physiology with Soil Nitrogen Retention: Balancing High Yield and Environmental Sustainability

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Controlled-release urea (CRU) can improve nitrogen (N) use efficiency and yield, but comprehensive evaluations of its agronomic, physiological, and environmental impacts remain limited. Through a two-year field experiment comparing three CRU types with conventional urea at five N rates (0-280 kg N ha−1), we demonstrate that CRU at 180 kg N ha−1 maintained high maize yields (13.9 Mg ha−1) while improving N use efficiency, with thermosetting polymer-coated samples (TCU) showing superior performance. There was a significant increase in the net photosynthetic rate by 7.9–32.7% and intercellular CO2 concentration by 20.6–40.0% under CRU treatments during the silking and milking stages. The CRU treatments also sustained optimal levels of hormones, N metabolism enzymes, and sucrase and urease activities. Compared to common urea, life cycle assessment indicates that CRU has achieved a 47.5% reduction in reactive N losses and an 18.7% decrease in greenhouse gas emissions. Economically, CRU outperformed common urea, with TCU providing the highest net benefit through yield stability and labor savings. These findings establish TCU at 180 kg N ha−1 as an optimal strategy of maize production in the North China Plain, balancing productivity, profitability, and environmental protection.

Article activity feed