Leaf Plasticity and Biomass Allocation of Arundo donax Under Combined Irrigation and Nitrogen Conditions in Salinized Soil
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Arundo donax L. (giant reed) is a perennial rhizomatous grass with high drought and salinity tolerance, making it a promising low-input bioenergy crop. However, the understanding of the combined effects of irrigation and nitrogen application in salinized soil on physiological adaptations and biomass allocation is still limited. In this study, we conducted a three-factor orthogonal pot experiment with four levels per factor in 2023 and 2024 as follows: salinity (S0: non-saline, S1: low salinity, S2: moderate salinity, S3: high salinity); irrigation amount (W0: 605, W1: 770, W2: 935, W3: 1100 mm); and nitrogen application (N0: 0, N1: 60, N2: 120, N3: 180 kg/ha). This resulted in 14 irrigation-nitrogen-salinity combined treatments. The results showed the following: (1) Irrigation, nitrogen and salinity significantly affected leaf dimensions, photosynthetic rate, plant height, biomass allocation and dry matter of the total plant (p < 0.05). (2) Significant coupling interactions were observed between salinity and irrigation, as well as between nitrogen and irrigation, affecting leaf morphology, plant height, leaf dry matter and total biomass accumulation; a coupling interaction of salinity and nitrogen was found to affect the leaf area, root, stem and leaf dry weight. (3) The S0N2W2 treatment produced the highest dry biomass, which was 2.2 times higher than for the S3N2W2 treatment. (4) Under moderate-salinity conditions (S2), biomass allocation favored stems and leaves, whereas under high-salinity conditions (S3) biomass allocation shifted towards leaves, followed by stems and roots. A combination of 935 mm irrigation amount and 120 kg/ha nitrogen (N2W2) under S1 and S2 is recommended to optimize biomass production. Our study provides practical irrigation and nitrogen management strategies to enhance A. donax cultivation on marginal saline lands, supporting climate-resilient bio-economy initiatives.