Development and Performance Validation of a Magnetorheological Damper for Passenger Cars Featuring Ball Screw and MR Brake
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This paper introduces a novel Magnetorheological (MR) damper integrated with a ball-screw mechanism (SMRB damper) that is designed to unify translational and rotational motions for enhanced automotive suspension performance. While shear-mode rotary MR dampers offer excellent responsiveness and stability, prior designs face persistent issues such as high off-state torque, structural complexity, or limited damping force. The proposed damper aims to overcome these limitations. Its design and operating principle are presented, followed by the development of a mathematical model based on the Bingham-plastic formulation and finite element analysis. To maximize damping capability, the key structural parameters are optimized using an Adaptive Particle Swarm Optimization (APSO) algorithm. Finally, a prototype is fabricated based on the optimized results, and experimental tests validate its performance against simulation predictions, demonstrating its improved potential for vibration control applications.