ML-RASPF: A Machine Learning-Based Rate-Adaptive Framework for Dynamic Resource Allocation in Smart Healthcare IoT
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The growing adoption of the Internet of Things (IoT) in healthcare has led to a surge in real-time data from wearable devices, medical sensors, and patient monitoring systems. This latency-sensitive environment poses significant challenges to traditional cloud-centric infrastructures, which often struggle with unpredictable service demands, network congestion, and end-to-end delay constraints. Consistently meeting the stringent QoS requirements of smart healthcare, particularly for life-critical applications, requires new adaptive architectures. We propose ML-RASPF, a machine learning-based framework for efficient service delivery in smart healthcare systems. Unlike existing methods, ML-RASPF jointly optimizes latency and service delivery rate through predictive analytics and adaptive control across a modular mist–edge–cloud architecture. The framework formulates task provisioning as a joint optimization problem that aims to minimize service latency and maximize delivery throughput. We evaluate ML-RASPF using a realistic smart hospital scenario involving IoT-enabled kiosks and wearable devices that generate both latency-sensitive and latency-tolerant service requests. Experimental results demonstrate that ML-RASPF achieves up to 20% lower latency, 18% higher service delivery rate, and 19% reduced energy consumption compared to leading baselines.