Comparing COVID-19 and Influenza Presentation and Trajectory
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Background: COVID-19 is a newly recognized illness with a predominantly respiratory presentation. It is important to characterize the differences in disease presentation and trajectory between COVID-19 patients and other patients with common respiratory illnesses. These differences can enhance knowledge of pathogenesis and help in guiding treatment.
Methods: Data from electronic medical records were obtained from individuals admitted with respiratory illnesses to Rambam Health Care Campus, Haifa, Israel, between October 1st, 2014 and October 1st, 2020. Four groups of patients were defined: COVID-19 (693), influenza (1,612), severe acute respiratory infection (SARI) (2,292), and Others (4,054). The variable analyzed include demographics (7), vital signs (8), lab tests (38), and comorbidities (15) from a total of 8,651 hospitalized adult patients. Statistical analysis was performed on biomarkers measured at admission and for their disease trajectory in the first 48 h of hospitalization, and on comorobidity prevalence.
Results: COVID-19 patients were overall younger in age and had higher body mass index, compared to influenza and SARI. Comorbidity burden was lower in the COVID-19 group compared to influenza and SARI. Severely- and moderately-ill COVID-19 patients older than 65 years of age suffered higher rate of in-hospital mortality compared to hospitalized influenza patients. At admission, white blood cells and neutrophils were lower among COVID-19 patients compared to influenza and SARI patients, while pulse rate and lymphoctye percentage were higher. Trajectories of variables during the first 2 days of hospitalization revealed that white blood count, neutrophils percentage and glucose in blood increased among COVID-19 patients, while decreasing among other patients.
Conclusions: The intrinsic virulence of COVID-19 appeared higher than influenza. In addition, several critical functions, such as immune response, coagulation, heart and respiratory function, and metabolism were uniquely affected by COVID-19.
Article activity feed
-
-
-
SciScore for 10.1101/2020.11.19.20235077: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement IRB: Ethical approval for this research was provided by the local institutional review board (IRB; #0141-20). Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Study limitations: The present study has few important limitations. Firstly, this study is based on a single medical center. …
SciScore for 10.1101/2020.11.19.20235077: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement IRB: Ethical approval for this research was provided by the local institutional review board (IRB; #0141-20). Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Study limitations: The present study has few important limitations. Firstly, this study is based on a single medical center. Secondly this analysis did not include important information such as symptoms, images (scans, x-rays), waveforms (e.g. electrocardiogram, oxygen measurements in blood, respiration, ventilation), omics data (e.g. genomics, epi-genomics, transcriptomics, lipidomics and metabolomics) and pharmacological interventions (apart from the severe cases definition). Thirdly, potential selection bias, information bias or non differential misclassification associated with the use of EMR data are existing in the presented dataset. Variables were collected from a unique EMR sources and using a single query tools. These EMR were curated similarly for each groups which allowed to observe clinically relevant significant differences. Differences in the prevalence of personal characteristics between the diseases among hospitalized patients can be related to differences in exposure risk, infection susceptibility, disease severity and admission to hospital policies and biases. To address the effect of selection bias related to differences in hospitalization admission policy of COVID-19 patients compared to the other diseases, asymptomatic and mild cases were excluded in part of the analysis. Asymptomatic and mild cases are usually not hospitalized in influenza and SARI groups unless combined with other risk factors (Berkson’s bias)(68). Furthermore, some of the lab tests are...
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-