Modeling and Short-Term Forecasts of Indicators for COVID-19 Outbreak in 25 Countries at the end of March
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Objective: The coronavirus, which originated in Wuhan, causing the disease called COVID-19, spread more than 200 countries and continents end of the March. In this study, it was aimed to model the outbreak with different time series models and also predict the indicators. Materials and Methods: The data was collected from 25 countries which have different process at least 20 days. ARIMA(p,d,q), Simple Exponential Smoothing, Holt’s Two Parameter, Brown’s Double Exponential Smoothing Models were used. The prediction and forecasting values were obtained for the countries. Trends and seasonal effects were also evaluated. Results and Discussion: China has almost under control according to forecasting. The cumulative death prevalence in Italy and Spain will be the highest, followed by the Netherlands, France, England, China, Denmark, Belgium, Brazil and Sweden respectively as of the first week of April. The highest daily case prevalence was observed in Belgium, America, Canada, Poland, Ireland, Netherlands, France and Israel between 10% and 12%.The lowest rate was observed in China and South Korea. Turkey was one of the leading countries in terms of ranking these criteria. The prevalence of the new case and the recovered were higher in Spain than Italy. Conclusion: More accurate predictions for the future can be obtained using time series models with a wide range of data from different countries by modelling real time and retrospective data. Bangladesh Journal of Medical Science Vol.19(0) 2020 p.06-20
Article activity feed
-
SciScore for 10.1101/2020.04.26.20080754: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources The data were obtained from the internet sources (WHO, Worldometers and Wikipedia). Wikipediasuggested: (Wikipedia, RRID:SCR_004897)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any …
SciScore for 10.1101/2020.04.26.20080754: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources The data were obtained from the internet sources (WHO, Worldometers and Wikipedia). Wikipediasuggested: (Wikipedia, RRID:SCR_004897)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-