Climate change intensifies plant-pollinator mismatch and increases secondary extinction risk for plants in northern latitudes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Climate change can lead to “secondary extinction risks” for plants owing to the decoupling of life-cycle events of plants and their pollinators (i.e., phenological mismatch). However, forecasting secondary extinction risk under future climate change remains challenging. We developed a new framework to quantify plants’ secondary extinction risk associated with phenological mismatch with bees using ca. 15,000 crowdsourced specimen records of Viola species and their solitary bee pollinators spanning 120 years across the eastern United States. We further examined latitudinal patterns in secondary extinction risk and explored how latitudinal variation in plant-pollinator specialization influence this risk. Secondary extinction risk of Viola spp. increases with latitude, indicating that future climate change likely will pose a greater threat to plant-bee pollinator networks at northern latitudes. Additionally, the sensitivity of secondary extinction risk to phenological mismatch with both generalist and specialist bee pollinators decreases with latitude: specialist bees display a sharper decrease at higher latitudes. Our findings demonstrate that existing conservation priorities identified solely based on primary extinction risk directly caused by climate change may not be sufficient to support self-sustaining populations of plants. Incorporating secondary extinction risk resulting from ecological mismatches between plants and pollinators into future global conservation frameworks should be carefully considered.

Article activity feed