Exploring the factors underlying adaptive social plasticity in foragers using an agent-based model

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Recent studies in group-living species suggest that being a valuable group member (a source of information or other resources) should increase social connectedness. This is because individuals may recognize and associate more with valuable individuals to increase the chances of benefiting from their activity, a process we refer to here as adaptive social plasticity. However, it is still unclear what minimum cognitive abilities are required for animals to alter their social interactions based on the value provided by different group members. We varied the cognitive skills of individuals in an agent-based model and evaluated changes in how access to a food resource impacts an informed agent’s social connectedness. We modeled a social foraging scenario in an arena with one food patch, which only one informed individual (i.e., producer) can make accessible. Agents’ movement decisions were driven by three cognitive-based parameters: attention (probability of perceiving successful foragers), preference (probability of following successful foragers), and memory (number of time steps a successful forager was remembered). To understand what combination of these parameters may facilitate adaptive social plasticity, we compared the producer’s strength (number of interactions) in a proximity network and the foraging success of non-producers between simulations with different combinations of parameter values. We found that non-zero values of each of our parameters are necessary for increases in producer strength and non-producer foraging success to occur. The largest increases in producer strength were seen at intermediate memory values and high values of attention and preference. Unless foragers were programmed to be able to move directly to the food patch when it was accessible to them, a non-zero value of memory was needed for them to experience an increase in foraging success. Furthermore, relationships between attention, memory, and foraging success were influenced by preference values, with the highest foraging success achieved at low to intermediate values of preference. Our results highlight the necessity of certain cognitive skills for animals to take advantage of the foraging success of their group mates, and scenarios in which rigid following behavior may lead to less beneficial results for foragers. This model lays the groundwork for further investigations into the cognitive and environmental factors expected to influence a feedback process between social connections and the value provided and received by group members.

Article activity feed