Towards More Economical Context-Augmented LLM Generation by Reusing Stored KV Cache
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Across large language model (LLM) applications, we observe an emerging trend for reusing KV caches to save the prefill delays of processing repeated input texts in different LLM inputs. This has led to a broad design space, including colocating stored KV caches with (or close to) GPUs to various KV cache compression. However, a key question remains unanswered: can these delay reductions also be economically favorable? Specifically, we ask whether a developer can use public cloud services to store precomputed KV caches and reuse them to save delay without incurring more costs in terms of compute, storage, and network. To answer this question, we propose an validated analytical model for the cloud cost (in compute, storage, and network) of storing and reusing KV caches based on various workload parameters, such as reuse frequency, generated text lengths, model sizes, etc. Preliminary results show that KV cache reusing is able to save both delay and cloud cost across a range of workloads with long context. And we call more efforts on building more economical context augmented LLM by KV cache reusing.