PANDA – Paired Anti-hate Narratives Dataset from Asia: Using an LLM-as-a-Judge to Create the First Chinese Counterspeech Dataset
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Despite the global prevalence of Modern Standard Chinese language, counterspeech (CS) resources for Chinese remain virtually nonexistent. To address this gap in East Asian counterspeech research we introduce a corpus of Modern Standard Mandarin counterspeech that focuses on combating hate speech in Mainland China. This paper proposes a novel approach of generating CS by using an LLM-as-a-Judge, simulated annealing, LLMs zero-shot CN generation and a round-robin algorithm. This is followed by manual verification for quality and contextual relevance. This paper details the methodology for creating effective counterspeech in Chinese and other non-Eurocentric languages, including unique cultural patterns of which groups are maligned and linguistic patterns in what kinds of discourse markers are programmatically marked as hate speech (HS). In our analysis of the generated corpora, we provide strong evidence for the lack of open-source, properly labeled Chinese hate speech data and the limitations of using an LLM-as-Judge to score possible answers in Chinese. Moreover, the present corpus serves as the first East Asian language based CS corpus and provides an essential resource for future research on counterspeech generation and evaluation.1