ToxiLab: How Well Do Open-Source LLMs Generate Synthetic Toxicity Data?
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Effective toxic content detection relies heavily on high-quality and diverse data, which serve as the foundation for robust content moderation models. Synthetic data has become a common approach for training models across various NLP tasks. However, its effectiveness remains uncertain for highly subjective tasks like hate speech detection, with previous research yielding mixed results. This study explores the potential of open-source LLMs for harmful data synthesis, utilizing controlled prompting and supervised fine-tuning techniques to enhance data quality and diversity. We systematically evaluated six open source LLMs on five datasets, assessing their ability to generate diverse, high-quality harmful data while minimizing hallucination and duplication. Our results show that Mistral consistently outperforms other open models, and supervised fine-tuning significantly enhances data reliability and diversity. We further analyze the trade-offs between prompt-based vs. fine-tuned toxic data synthesis, discuss real-world deployment challenges, and highlight ethical considerations. Our findings demonstrate that fine-tuned open source LLMs provide scalable and cost-effective solutions to augment toxic content detection datasets, paving the way for more accessible and transparent content moderation tools.