Uncertainty-Driven Modeling of Microporosity and Permeability in Clastic Reservoirs Using Random Forest
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Predicting microporosity and permeability in clastic reservoirs is a challenge in reservoir quality assessment, especially in formations where direct measurements are difficult or expensive. These reservoir properties are fundamental in determining a reservoir's capacity for fluid storage and transmission, yet conventional methods for evaluating them, such as Mercury Injection Capillary Pressure (MICP) and Scanning Electron Microscopy (SEM), are resource-intensive. The aim of this study is to develop a cost-effective machine learning model to predict complex reservoir properties using readily available field data and basic laboratory analyses. A Random Forest classifier was employed, utilizing key geological parameters such as porosity, grain size distribution, and spectral gamma-ray (SGR) measurements. An uncertainty analysis was applied to account for natural variability, expanding the dataset, and enhancing the model's robustness. The model achieved a high level of accuracy in predicting microporosity (93%) and permeability levels (88%). By using easily obtainable data, this model reduces the reliance on expensive laboratory methods, making it a valuable tool for early-stage exploration, especially in remote or offshore environments. The integration of machine learning with uncertainty analysis provides a reliable and cost-effective approach for evaluating key reservoir properties in siliciclastic formations. This model offers a practical solution to improve reservoir quality assessments, enabling more informed decision-making and optimizing exploration efforts.