Mastering Artifact Correction in Neuroimaging Analysis: A Retrospective Approach

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The correction of artifacts in Magnetic Resonance Imaging (MRI) is increasingly relevant as voluntary and involuntary artifacts can hinder data acquisition. Reverting from corrupted to artifact-free images is a complex task. Deep Learning (DL) models have been employed to preserve data characteristics and to identify and correct those artifacts. We propose MOANA, a novel DL-based solution to correct artifacts in multi-contrast brain MRI scans. MOANA offers two models: the simulation and the correction models. The simulation model introduces perturbations similar to those occurring in an exam while preserving the original image as ground truth; this is required as publicly available datasets rarely have motion-corrupted images. It allows the addition of three types of artifacts with different degrees of severity. The DL-based correction model adds a fourth contrast to state-of-the-art solutions while improving the overall performance of the models. MOANA achieved the highest results in the FLAIR contrast, with a Structural Similarity Index Measure (SSIM) of 0.9803 and a Normalized Mutual Information (NMI) of 0.8030. With this, the MOANA model can correct large volumes of images in less time and adapt to different levels of artifact severity, allowing for better diagnosis.

Article activity feed