Some further developments on a neurobiologically-based model for color sensations in humans

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

At HVEI-2012, I presented a neurobiologically-based model for trichromatic color sensations in humans, mapping the neural substrate for color sensations to V1-L4—the thalamic recipient layer of the primary visual cortex. In this paper, I propose that V1-L4 itself consists of three distinct sub-layers that directly correspond to the three primary color sensations: blue, red, and green. Furthermore, I apply this model to three aspects of color vision: the three-dimensional (3D) color solid, dichromatism, and ocular agnosticism. Regarding these aspects further: (1) 3D color solid: V1-L4 is known to exhibit a gradient of cell densities from its outermost layer (i.e., its pia side) to its innermost layer (i.e., its white matter side). Taken together with the proposition that the population size of a cell assembly directly corresponds with the magnitude of a color sensation, it can be inferred that theneurobiologically-based color solid is a tilted cuboid. (2) Chromatic color blindness: Using deuteranopia as an example, at the retinal level, M-cones are lost and replaced by L-cones. However, at the cortical level, deuteranopia manifests as a fusion of the two bottom layers of V1-L4. (3) Ocular agnosticism: Although color sensation is monocular, we normally are not aware of which eye we are seeing with. This visual phenomenon can be explained by the nature of ocular integration within V1-L4. A neurobiologically-based model for human color sensations could significantly contribute to future engineering efforts aimed at enhancing human color experiences.

Article activity feed