Evaluating Large Language Models for Belief Inference: Mapping Belief Networks at Scale

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Beliefs are interconnected, influencing how people process and update what they think. To study the interconnectedness of beliefs at scale, we introduce a novel analytical pipeline leveraging a finetuned GPT-4o model to infer belief structures from large-scale social media data. We evaluate the model's performance by (1) comparing it to human annotated data (2) and its inferences to human-generated survey data. Our results show that a fine-tuned GPT-4o model can effectively recover belief structures, allowing for a level of scalability and efficiency that is impossible using traditional survey methods of data collection. This work demonstrates the potential for large language models to perform belief inference tasks and provides a framework for future research on the analysis of belief structures.

Article activity feed