Improving Statistical Reporting in Psychology
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Transparent and comprehensive statistical reporting is critical for ensuring the credibility, reproducibility, and interpretability of psychological research. This paper offers a structured set of guidelines for reporting statistical analyses in quantitative psychology, emphasizing clarity at both the planning and results stages. Drawing on established recommendations and emerging best practices, we outline key decisions related to hypothesis formulation, sample size justification, preregistration, outlier and missing data handling, statistical model specification, and the interpretation of inferential outcomes. We address considerations across frequentist and Bayesian frameworks and fixed as well as sequential research designs, including guidance on effect size reporting, equivalence testing, and the appropriate treatment of null results. To facilitate implementation of these recommendations, we provide the Transparent Statistical Reporting in Psychology (TSRP) Checklist that researchers can use to systematically evaluate and improve their statistical reporting practices (https://osf.io/t2zpq/). In addition, we provide a curated list of freely available tools, packages, and functions that researchers can use to implement transparent reporting practices in their own analyses to bridge the gap between theory and practice. To illustrate the practical application of these principles, we provide a side-by-side comparison of insufficient versus best-practice reporting using a hypothetical cognitive psychology study. By adopting transparent reporting standards, researchers can improve the robustness of individual studies and facilitate cumulative scientific progress through more reliable meta-analyses and research syntheses.