Prediction of Activity Coefficients by Similarity-based Imputation Using Quantum-chemical Descriptors

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In this work, we introduce a novel approach for predicting thermodynamic properties of binary mixtures, which we call the similarity-based method (SBM). The method is based on quantifying the pairwise similarity of components, which we achieve by comparing quantum-chemical descriptors of the components, namely σ-profiles. The basic idea behind the approach is that mixtures with similar pairs of components will have similar thermodynamic properties. The SBM is trained on a matrix that contains some data for a given property for different binary mixtures; the missing entries are then predicted by the SBM. As an example, we consider the prediction of isothermal activity coefficients at infinite dilution (γ∞ij ) and show that the SBM outperforms the well-established physical methods modified UNIFAC (Dortmund) and COSMO-SAC-dsp. In this case, the matrix is only sparsely occupied, and it is shown that the SBM works also if only a limited number of data for similar mixtures is available. The SBM idea can be transferred to any mixture property and is a powerful tool for generating essential data for many applications.

Article activity feed