Anisotropy-Superconductivity Coupling in High-Entropy AgInSnPbBiTe₅: A Unified Theoretical Framework

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This work establishes quantitative relationships between magnetic anisotropy energy (E*) and superconducting properties in high-entropy telluride AgInSnPbBiTe₅ through: Modified McMillan formalism for Tₙ(E*) Anisotropy-dependent Ginzburg-Landau theory μSR-verified penetration depth scaling Strong-coupling gap enhancement model Key results: Tₙ reduction rate: -0.15 meV⁻¹ Jₙ suppression threshold: E꜀* = 2.1 meV λ(0) scaling factor: +5% per meV E* Detailed Description This study presents a unified theoretical framework integrating: Fourth-order anisotropy modeling with element-specific weightings (Sn/Ag-dominated K4=+0.34K4​=+0.34 meV, Bi/Pb-induced K6=−0.16K6​=−0.16 meV) 1 TF-μSR validation showing strong-coupling behavior (2Δ(0)/kBTc≈102Δ(0)/kB​Tc​≈10) and gap anisotropy (Δ(k)=Δ0[1+K4(αx4+αy4+αz4)+K6(αx2αy2αz2)]Δ(k)=Δ0​[1+K4​(αx4​+αy4​+αz4​)+K6​(αx2​αy2​αz2​)]) 1 Disorder-driven effects analogous to Pb-Bi alloys, where configurational disorder modifies gap structures and critical fields 78 Key advances:✓ Experimental-theoretical synergy: R2=0.98R2=0.98 agreement between μSR data and anisotropy model 1✓ Anisotropy engineering: Gap maxima along ⟨100⟩⟨100⟩ and suppression along ⟨111⟩⟨111⟩ directions 1✓ High-entropy tuning: Leveraging chemical disorder to enhance spin-orbit coupling and pairing anisotropy, akin to Pb-Bi systems  

Article activity feed