Correlated Texture–Composition Effects on Magnetic Anisotropy and Superconductivity in EuIn₂As₂₋ₓPₓ Zintl Compounds

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study presents an integrated empirical framework that captures the interplay between crystallographic texture, elemental composition, and superconducting behavior in the Zintl-type compound series EuIn₂As₂₋ₓPₓ (0 ≤ x ≤ 2). By redefining the superconducting composition index (%Si) as a weighted contribution from constituent elements (Eu, In, As, P) and quantifying texture through a composite orientation factor (A), a predictive energy descriptor EEE is constructed. This descriptor correlates strongly with key superconducting parameters, including critical temperature (Tₚ), critical current density (Jₚ), coherence length (ξ), vortex pinning energy (U₀), and magnetic penetration depth (λ). Regression analyses across these properties yield R² values between 0.912 and 0.978, underscoring the robustness of the model. Notably, the intermediate phase EuIn₂AsP (x = 1) serves as a test case where the predicted values align with known experimental behavior. 3D visualizations further illustrate how microstructure and composition jointly influence superconducting performance, offering practical design pathways for texture-optimized Zintl compounds. The study establishes the energy descriptor EEE as a unifying variable for structure–property correlations in anisotropic superconductors.

Article activity feed