Geometrical Modifications for Reliable 3D Printing of Microvalves in Multi-Plane Microfluidic Devices

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Three-dimensional (3D) printing has emerged as a transformative technology for fabricating complex microfluidic devices, enabling features that were previously unattainable with traditional layer-by-layer soft lithography. One key challenge in advancing 3D-printed microfluidics is the integration of functional microvalves across multiple spatial orientations. This study explores the design, simulation, and experimental realization of novel microvalve configurations to overcome the limitations of conventional, single-plane valves. We hypothesize that non-traditional valve orientations, such as those with vertically printed membranes or perpendicular control channels, present unique fabrication and operational challenges, including membrane delamination and stress-induced failure. To address these issues, we developed optimized geometries and fabrication techniques, supported by computational fluid dynamics (CFD) simulations to predict and mitigate stress concentrations. Our results demonstrate successful implementation of previously unreported valve configurations, validated through pressure testing and flow control experiments. These advancements expand the versatility of 3D-printed microfluidic systems, paving the way for more robust and adaptable devices in biomedical, chemical, and environmental applications.

Article activity feed