Food trade disruption after global catastrophes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The global food trade system is resilient to minor disruptions but vulnerable to major ones. Major shocks can arise from global catastrophic risks, such as abrupt sunlight reduction scenarios (e.g., nuclear war) or global catastrophic infrastructure loss (e.g., due to severe geomagnetic storms or a global pandemic). We use a network model to examine how these two scenarios could impact global food trade, focusing on wheat, maize, soybeans, and rice, accounting for about 60% of global calorie intake. Our findings indicate that an abrupt sunlight reduction scenario, with soot emissions equivalent to a major nuclear war between India and Pakistan (37 Tg), could severely disrupt trade, causing most countries to lose the vast majority of their food imports (50-100 % decrease), primarily due to the main exporting countries being heavily affected. Global catastrophic infrastructure loss of the same magnitude as the abrupt sunlight reduction has a more homogeneous distribution of yield declines, resulting in most countries losing up to half of their food imports (25-50 % decrease). Thus, our analysis shows that both scenarios could significantly impact the food trade. However, the abrupt sunlight reduction scenario is likely more disruptive than global catastrophic infrastructure loss regarding the effects of yield reductions on food trade. This study underscores the vulnerabilities of the global food trade network to catastrophic risks and the need for enhanced preparedness.

Article activity feed