Fully-dynamic seismic cycle simulations in co-evolving fault damage zones controlled by damage rheology

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Both short-term coseismic off-fault damage and long-term fault growth during interseismic periods have been suggested to contribute to the formation and evolution of fault damage zones. Most previous numerical models focus on simulating either off-fault damage in a single earthquake or off-fault plasticity in seismic cycles ignoring changes of elastic moduli. Here we developed a new method to simulate the damage evolution of fault zones and dynamic earthquake cycles together in a 2D anti-plane model. We assume fault slip is governed by the laboratory-derived rate-and-state friction law while the constitutive response of adjacent off-fault material is controlled by a simplified version of the Lyakhovsky-Ben-Zion continuum brittle damage model. This newly developed modeling framework opens a window to simulate the co-evolution of earthquakes and fault damage zones, shedding light on the physics of earthquakes on natural faults. Our models generate coseismic velocity drop as evidenced by seismological observations and a long-term shallow slip deficit. In addition, the coseismic slip near the surface is smaller due to off-fault inelastic deformation and results in a larger coseismic slip deficit. Damage, here refers to both rigidity reduction and inelastic deformation of the off-fault medium, mainly occurs during earthquakes and concentrates at shallow depths as a flower structure, in which a distributed damage area surrounds a localized, highly damaged inner core. With the experimentally based logarithmic healing law, coseismic off-fault rigidity reduction cannot heal fully and permanently accumulates over multiple seismic cycles. The fault zone width and rigidity eventually saturate at long cumulative slip, reaching a mature state without further change.

Article activity feed