Integrating Artificial Intelligence into Scholarly Peer Review: A Framework for Enhancing Efficiency and Quality

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Scholarly publishing is a multibillion-dollar industry that evaluates research outputs and helps curate researcher reputation. These functions are underpinned by more than 100 million hours of volunteer peer reviewer time, representing an estimated $1.5 billion just in the United States . However, the status quo is under pressure from multiple forces: a growing number of research publications requiring peer review, questions about research integrity and reproducibility , business model changes and legal challenges from unpaid peer reviewers. The emergence of AI has exacerbated the problems, but AI also represents an opportunity to ameliorate the peer review experience and improve standards. We propose a framework for integrating AI into scholarly peer review that leverages the strengths of AI and human expertise. The framework offers a structured approach for evaluating the application of AI, with the aim of improving efficiency, consistency, comprehensiveness, and quality in the evaluation of scholarly contributions.

Article activity feed