A Taxonomy of Spatial Navigation in Mammals: Insights from Computational Modeling
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Spatial navigation is a vital cognitive process in nearly all animals, relying on complex neuronal mechanisms to extract, process, and act upon spatial representations. To advance the understanding of spatial navigation and its neural mechanisms, Parra-Barrero et al. (2023) have proposed a taxonomy of spatial navigation processes based on extensive behavioral and neural studies. These processes are hierarchically organized in two levels with navigation strategies at the top and behaviors at the bottom. Building upon this taxonomy, here, we review computational modeling studies on spatial navigation in mammals to provide an overview of the current state of the art and further analyze the navigation processes within the proposed taxonomy. We specifically focus on the representations required by navigation processes, how these representations are extracted, and the computations necessary to execute each strategy and behavior. We propose that the key to understanding what representations and computations are being used by agents lies in testing their ability to generalize to novel situations. We identify three types of generalization relevant for navigation and analyze to what extent current computational models are capable of achieving these types of generalization. Our review shows that while significant progress has been made in modeling navigation, substantial work remains to model and fully understand spatial navigation in mammals.