Advancing AI Negotiations: New Theory and Evidence from a Large-Scale Autonomous Negotiations Competition
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We conducted an International AI Negotiation Competition in which participants designed and refined prompts for AI negotiation agents. We then facilitated over 180,000 negotiations between these agents across multiple scenarios with diverse characteristics and objectives. Our findings revealed that principles from human negotiation theory remain crucial even in AI-AI contexts. Surprisingly, warmth—a traditionally human relationship-building trait—was consistently associated with superior outcomes across all key performance metrics. Dominant agents, meanwhile, were especially effective at claiming value. Our analysis also revealed unique dynamics in AI-AI negotiations not fully explained by existing theory, including AI-specific technical strategies like chain-of-thought reasoning, prompt injection, and strategic concealment. When we applied natural language processing (NLP) methods to the full transcripts of all negotiations we found positivity, gratitude and question-asking (associated with warmth) were strongly associated with reaching deals as well as objective and subjective value, whereas conversation lengths (associated with dominance) were strongly associated with impasses. The results suggest the need to establish a new theory of AI negotiation, which integrates classic negotiation theory with AI-specific negotiation theories to better understand autonomous negotiations and optimize agent performance.