How Ensembling AI and Public Managers Improves Decision-Making
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Artificial Intelligence (AI) applications are transforming public sector decision-making. However, most research conceptualizes AI as a form of specialized algorithmic decision support tool. In contrast, this study introduces the concept of human-AI ensembles, where humans and AI tackle the same tasks together, rather than specializing in certain parts. We argue that this is particularly relevant for many public sector decisions, where neither human nor AI-based decision-making has a clear advantage over the other in terms of legitimacy, efficacy, or legality. We illustrate this design theory within access to public employment, focusing on two key areas: (a) the potential of ensembling human and AI to reduce biases and (b) the inclinations of public managers to use AI advice. Study 1 presents evidence from the assessment of real-life job candidates (n = 2,000) at the intersection of gender and ethnicity by public managers compared to AI. The results indicate that ensembled decision-making may alleviate ethnic biases. Study 2 examines how receptive public managers are to AI advice. Results from a pre-registered survey experiment involving managers (n = 538 with 4 observations each) show that decision-makers, when reminded of the unlawfulness of hiring discrimination, prioritize AI advice over human advice.