A Multimodal Agentic AI for the Autonomous Precise Landing of UAVs
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Autonomous landing for Unmanned Aerial Vehicles (UAVs) requires both precision and resilience against environmental uncertainties, capabilities that current approaches struggle to deliver. This paper presents a novel learning-based solution that combines an advanced multimodal transformer-based detector with a reinforcement learning formulation to achieve reliable autonomous landing behavior across varying scenario uncertainties. Beyond the integration of multimodality for robust target detection, this research incorporates a comprehensive analysis of the impact of state representation on decision-making performance. The proposed methodology is validated through extensive simulation studies and real-world field experiments conducted on physical UAV platforms under natural wind disturbances, demonstrating reliable transfer from simulated training environments to controlled outdoor conditions. Field experiments across varying initial conditions and wind stress confirm the system’s robustness, achieving landing precision of 0.10 ± 0.08 meters in outdoor trials, demonstrating centimeter-level accuracy that surpasses the meter-level precision of global positioning systems.