An extracellular, Ca 2+ -activated nuclease (EcnA) mediates transformation in a naturally competent archaeon.

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Transformation, the uptake of DNA directly from the environment, is a major driver of gene flow in microbial populations. In bacteria, DNA uptake requires a nuclease that processes dsDNA to ssDNA, which is subsequently transferred into the cell and incorporated into the genome. However, the process of DNA uptake in archaea is still unknown. Previously, we cataloged genes essential to natural transformation in Methanococcus maripaludis , but few homologs of bacterial transformation-associated genes were identified. Here, we characterize one gene, MMJJ_16440 (named here as ecnA ) to be a membrane-bound nuclease. We show that EcnA is Ca -activated, present on the cell surface, and essential for transformation. While EcnA is capable of degrading several forms of DNA, the highest activity was observed with ssDNA as a substrate. Activity was also observed with circular dsDNA, suggesting that EcnA is an endonuclease. This is the first biochemical characterization of a transformation-associated protein in a member of the archaeal domain and suggests that both archaeal and bacterial transformation initiate in an analogous fashion.

Article activity feed