The Impact of SARS-CoV-2 Lineages (Variants) and COVID-19 Vaccination on the COVID-19 Epidemic in South Africa: Regression Study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Emerging SARS-CoV-2 variants have been attributed to the occurrence of secondary, tertiary, quaternary, and quinary COVID-19 epidemic waves threatening vaccine efforts owing to their immune invasiveness. Since the importation of SARS-CoV-2 in South Africa, with the first reported COVID-19 case on March 5, 2020, South Africa has observed 5 consecutive COVID-19 epidemic waves. The evolution of SARS-CoV-2 has played a major role in the resurgence of COVID-19 epidemic waves in South Africa and across the globe.

Objective

We aimed to conduct descriptive and inferential statistical analysis on South African COVID-19 epidemiological data to investigate the impact of SARS-CoV-2 lineages and COVID-19 vaccinations in South African COVID-19 epidemiology.

Methods

The general methodology involved the collation and stratification, covariance, regression analysis, normalization, and comparative inferential statistical analysis through null hypothesis testing (paired 2-tailed t tests) of South African COVID-19 epidemiological data.

Results

The mean daily positive COVID-19 tests in South Africa’s first, second, third, fourth, and fifth COVID-19 epidemic wave periods were 11.5% (SD 8.58%), 11.5% (SD 8.45%), 13.3% (SD 9.72%), 13.1% (SD 9.91%), and 14.3% (SD 8.49%), respectively. The COVID-19 transmission rate in the first and second COVID-19 epidemic waves in South Africa was similar, while the COVID-19 transmission rate was higher in the third, fourth, and fifth COVID-19 epidemic waves than in the aforementioned waves. Most COVID-19 hospitalized cases in South Africa were in the general ward (60%-79.1%). Patients with COVID-19 on oxygen were the second-largest admission status (11.2%-16.8%), followed by patients with COVID-19 in the intensive care unit (8.07%-16.7%). Most patients hospitalized owing to COVID-19 in South Africa’s first, second, third, and fourth COVID-19 epidemic waves were aged between 40 and 49 years (16.8%-20.4%) and 50 and 59 years (19.8%-25.3%). Patients admitted to the hospital owing to COVID-19 in the age groups of 0 to 19 years were relatively low (1.98%-4.59%). In general, COVID-19 hospital admissions in South Africa for the age groups between 0 and 29 years increased after each consecutive COVID-19 epidemic wave, while for age groups between 30 and 79 years, hospital admissions decreased. Most COVID-19 hospitalization deaths in South Africa in the first, second, third, fourth, and fifth COVID-19 epidemic waves were in the ages of 50 to 59 years (15.8%-24.8%), 60 to 69 years (15.9%-29.5%), and 70 to 79 years (16.6%-20.7%).

Conclusions

The relaxation of COVID-19 nonpharmaceutical intervention health policies in South Africa and the evolution of SARS-CoV-2 were associated with increased COVID-19 transmission and severity in the South African population. COVID-19 vaccination in South Africa was strongly associated with a decrease in COVID-19 hospitalization and severity in South Africa.

Article activity feed

  1. SciScore for 10.1101/2021.10.22.21265316: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The stratification of data in this study was done by splitting the data using the epidemic period variable in the IBM SPSS STATISTICS 27 Software. 2.2 Regression of South African COVID-19 Epidemiological Data: In an epidemic, several factors influence the outcome of the observed epidemic.
    SPSS
    suggested: (SPSS, RRID:SCR_002865)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.