Transmission Dynamics of the COVID-19 Epidemic at the District Level in India: Prospective Observational Study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

On March 9, 2020, the first COVID-19 case was reported in Jodhpur, Rajasthan, in the northwestern part of India. Understanding the epidemiology of COVID-19 at a local level is becoming increasingly important to guide measures to control the pandemic.

Objective

The aim of this study was to estimate the serial interval and basic reproduction number (R0) to understand the transmission dynamics of the COVID-19 outbreak at a district level. We used standard mathematical modeling approaches to assess the utility of these factors in determining the effectiveness of COVID-19 responses and projecting the size of the epidemic.

Methods

Contact tracing of individuals infected with SARS-CoV-2 was performed to obtain the serial intervals. The median and 95th percentile values of the SARS-CoV-2 serial interval were obtained from the best fits with the weibull, log-normal, log-logistic, gamma, and generalized gamma distributions. Aggregate and instantaneous R0 values were derived with different methods using the EarlyR and EpiEstim packages in R software.

Results

The median and 95th percentile values of the serial interval were 5.23 days (95% CI 4.72-5.79) and 13.20 days (95% CI 10.90-18.18), respectively. R0 during the first 30 days of the outbreak was 1.62 (95% CI 1.07-2.17), which subsequently decreased to 1.15 (95% CI 1.09-1.21). The peak instantaneous R0 values obtained using a Poisson process developed by Jombert et al were 6.53 (95% CI 2.12-13.38) and 3.43 (95% CI 1.71-5.74) for sliding time windows of 7 and 14 days, respectively. The peak R0 values obtained using the method by Wallinga and Teunis were 2.96 (95% CI 2.52-3.36) and 2.92 (95% CI 2.65-3.22) for sliding time windows of 7 and 14 days, respectively. R0 values of 1.21 (95% CI 1.09-1.34) and 1.12 (95% CI 1.03-1.21) for the 7- and 14-day sliding time windows, respectively, were obtained on July 6, 2020, using method by Jombert et al. Using the method by Wallinga and Teunis, values of 0.32 (95% CI 0.27-0.36) and 0.61 (95% CI 0.58-0.63) were obtained for the 7- and 14-day sliding time windows, respectively. The projection of cases over the next month was 2131 (95% CI 1799-2462). Reductions of transmission by 25% and 50% corresponding to reasonable and aggressive control measures could lead to 58.7% and 84.0% reductions in epidemic size, respectively.

Conclusions

The projected transmission reductions indicate that strengthening control measures could lead to proportionate reductions of the size of the COVID-19 epidemic. Time-dependent instantaneous R0 estimation based on the process by Jombart et al was found to be better suited for guiding COVID-19 response at the district level than overall R0 or instantaneous R0 estimation by the Wallinga and Teunis method. A data-driven approach at the local level is proposed to be useful in guiding public health strategy and surge capacity planning.

Article activity feed

  1. SciScore for 10.1101/2020.07.03.20146167: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Strengths and limitations: One of the strengths of our study was estimation of serial interval based on large data over a period of two months. Also, since our study was based on contact history of infected individuals instead of daily follow-up of contacts of infected individuals for disease onset, we minimized underreporting of longer serial intervals which is possible due to right-truncation in assessing serial interval based on follow-up method.22 Further, our use of time-varying method for daily R0 estimation and maximum likelihood method for overall R0 estimation had the benefit of less bias as compared to exponential growth and sequential Bayesian methods.23 The time-varying method had the added advantage of providing daily R0 values which were useful in assessing the effectiveness of control measures, as compared to other methods which provide only an aggregate R0 value.22 Population level estimates relying on daily reports could underestimate the value of R0 as compared to those of closed populations, as many infected individuals are likely to be missed, especially if the testing capacity is limited or proportion of asymptomatics is high.20 Further, modelling assumptions such as assuming a finite probability of interaction of infector-infectee pairs reported within a range of serial interval might not be applicable for large population cohorts.14 In order to overcome such limitations use of both spatial and temporally structured data has been proposed.24

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.