Predicting Health Disparities in Regions at Risk of Severe Illness to Inform Health Care Resource Allocation During Pandemics: Observational Study
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Pandemics including COVID-19 have disproportionately affected socioeconomically vulnerable populations.
Objective
Our objective was to create a repeatable modeling process to identify regional population centers with pandemic vulnerability.
Methods
Using readily available COVID-19 and socioeconomic variable data sets, we used stepwise linear regression techniques to build predictive models during the early days of the COVID-19 pandemic. The models were validated later in the pandemic timeline using actual COVID-19 mortality rates in high population density states. The mean sample size was 43 and ranged from 8 (Connecticut) to 82 (Michigan).
Results
The New York, New Jersey, Connecticut, Massachusetts, Louisiana, Michigan, and Pennsylvania models provided the strongest predictions of top counties in densely populated states with a high likelihood of disproportionate COVID-19 mortality rates. For all of these models, P values were less than .05.
Conclusions
The models have been shared with the Department of Health Commissioners of each of these states with strong model predictions as input into a much needed “pandemic playbook” for local health care agencies in allocating medical testing and treatment resources. We have also confirmed the utility of our models with pharmaceutical companies for use in decisions pertaining to vaccine trial and distribution locations.
Article activity feed
-
SciScore for 10.1101/2020.07.06.20147181: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Limitations: The models employed in the analyses are reliant on the accuracy of the datasets compiled. COVID-19 mortality data in particular has been notoriously difficult for states to report accurately at a county level …
SciScore for 10.1101/2020.07.06.20147181: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Limitations: The models employed in the analyses are reliant on the accuracy of the datasets compiled. COVID-19 mortality data in particular has been notoriously difficult for states to report accurately at a county level throughout the pandemic for reasons including mortality cause classification errors at local coroner’s offices17.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-
-