Novel Indicator to Ascertain the Status and Trend of COVID-19 Spread: Modeling Study
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
In the fight against the pandemic of COVID-19, it is important to ascertain the status and trend of the infection spread quickly and accurately.
Objective
The purpose of our study is to formulate a new and simple indicator that represents the COVID-19 spread rate by using publicly available data.
Methods
The new indicator K is a backward difference approximation of the logarithmic derivative of the cumulative number of cases with a time interval of 7 days. It is calculated as a ratio of the number of newly confirmed cases in a week to the total number of cases.
Results
The analysis of the current status of COVID-19 spreading over countries showed an approximate linear decrease in the time evolution of the K value. The slope of the linear decrease differed from country to country. In addition, it was steeper for East and Southeast Asian countries than for European countries. The regional difference in the slope seems to reflect both social and immunological circumstances for each country.
Conclusions
The approximate linear decrease of the K value indicates that the COVID-19 spread does not grow exponentially but starts to attenuate from the early stage. The K trajectory in a wide range was successfully reproduced by a phenomenological model with the constant attenuation assumption, indicating that the total number of the infected people follows the Gompertz curve. Focusing on the change in the value of K will help to improve and refine epidemiological models of COVID-19.
Article activity feed
-
SciScore for 10.1101/2020.04.25.20080200: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank…
SciScore for 10.1101/2020.04.25.20080200: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a protocol registration statement.
-
-
-
